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Abstract

We measured the dips of thrusts forming in a uniform sand layer under horizontal shortening by a rigid emerging ramp in conditions of full
erosion. Various ramp dips and four types of ramp material were used throughout the 12 experiments. In three experiments, the ramp was short-
cut by a less steep thrust forming a spontaneous ramp in the sand. The forward modelling proposed to predict these observations involves
(i) computing the total dissipation in the structure by using global force equilibrium and a parameterised kinematic framework including the
possibility of shortcut development, and (ii) minimising the total dissipation of mechanical work with respect to the kinematic parameters
(i.e., the thrust dips), for which two analytic solutions are found. The inverse problem involves computing probability densities over the para-
metric space of friction coefficients, including the internal friction angle of the sand, and friction angles of the four materials used on the rigid
ramps. Practically, this involves computing a misfit (using the L2 norm) between the observed and predicted thrust dips for every possible value
of the friction angles. The resulting probability density provides all the quantitative information that can be retrieved from the experiments in the
light of our forward modelling. Ramp friction angles exhibit sharp probability changes at values that trigger the occurrence of shortcuts, thus
yielding non-trivial bounds on the ramp friction values that are directly related to the observations of ramp and back thrust geometry. Also, the
probability distribution of the internal sand friction, and those of the ramp frictions, is in good agreement with independent measurements.
This approach is designed to be applicable to field studies of brittle deformation where geometries are observed and rheological parameters
are sought.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fold-and-thrust belts are classically characterized by the
shortening of sedimentary layers above horizontal décollement
layers that lie at decreasing depths towards the exterior of the
orogenic belt (Rich, 1934). These various décollements join by
reverse faulting across more competent layers, forming a series
of ramps. Generic kinematic models of this flaterampeflat
geometry (e.g., Suppe, 1983) have proven useful in the
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construction of balanced cross-sections, and in the interpreta-
tion of microstructures formed due to large scale folding asso-
ciated with thrust ramps (e.g., Grelaud et al., 2000). However,
these models are less helpful in relating field observations to
rheological parameters because they make no reference to
force balance. The use of analogue models with well known
rheological parameters gives some insight into these problems
(e.g., Merle and Abidi, 1995; Bonini et al., 2000; Persson,
2001); although conclusions often remain qualitative because
forces are not measured or modelled. Numerical simulations,
which solve the full boundary valued problem, offer comple-
mentary insights (e.g., Erickson and Jamison, 1995; Erickson
et al., 2001), although they often face problems related to
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strain localisation or the effects of sharp boundary conditions.
This makes it difficult to perform detailed comparisons of their
outputs with analogue models (e.g., see Buiter et al., 2006;
Schreurs et al., 2006, and references therein). Thus, analogue
and numerical models are experimental tools used to help us
better understand the deformation mechanisms and tectonic
structures. Ideally, each should be tested against analytical
solutions when possible. This allows analogue experiments
to get closer to a full quantitative analysis, while numerical
solutions can be tested for convergence. The present paper is
our third contribution in this line of research.

Using a kinematic model of fault-bend folding (Suppe,
1983) as a starting point and inspired by Merchant’s (1944)
approach of the mechanics of metal cutting, Maillot and Leroy
(2003) have proposed a model that optimizes the dissipation of
mechanical work with respect to the dip of the transition zone
between the hanging walls of the lower flat and ramp, which
may appear as a reverse fault or as a ductile hinge. They
showed in particular that the dip is less than that which is usu-
ally assumed in kinematic models, leading to a thickening of
the hanging wall above the ramp. This prediction has been ver-
ified using sand box experiments (Maillot and Koyi, 2006). In
the present paper we apply our theoretical approach to the hor-
izontal shortening of a single sand layer over a rigid ramp in
a steady-state regime involving full erosion of any built-up
surface relief. This setup is analogous to the shortening of sed-
imentary layers cut by pre-existing normal faults due to an
older extensional phase. Numerous examples can be found
in the literature (e.g., Roure and Colletta, 1996), most notably
in the Colombian and Venezuelan Andes, and the French sub-
alpine massifs (e.g., see Colletta, 2005). Here, we present
a new analytical solution which generalises Anderson’s pre-
diction of dips of conjugate reverse faults for the case of faults
with different friction angles. In an attempt to illustrate how
such theoretical predictions can be used to analyze field data
of thrust dips, we treat our sand box experiments as if they
were field observations: thrusts can be identified and their
dips can be measured, but their rheological parameters remain
unknown. We propose to use the inverse problem theory
(Tarantola, 1987) to gain quantitative information on these
parameters.

The contents of the paper are as follows. In Section 2, we
present a series of 12 experiments in which a uniform sand
layer is compressed horizontally over a rigid ramp with condi-
tions of full erosion. Six ramp dips (from 19� to 66�) and four
types of frictional surfaces were used. The sand responds by
forming a series of thrusts that allow it to slide upward over
the imposed ramp. In three experiments, the imposed ramp
was shortcut by a less steep spontaneous ramp in the sand.
For most experiments the thrust dips follow a Gaussian distri-
bution, as indicated by a c2 test. The direct problem is pre-
sented in Section 3. Assuming a purely frictional behaviour
for the sand, a forward model is developed in which (i) the to-
tal dissipation in the structure is computed by combining the
known kinematics, parameterised using the ramp and thrust
dips, with a global force equilibrium of rigid blocks, and (ii)
the total dissipation is minimised with respect to the thrust
dips (Maillot and Leroy, 2003). Finally, the inverse problem
presented in Section 4 involves computing probability densi-
ties over the parametric space of the friction coefficients (a
five dimensional space defined by the internal friction angle
of the sand, and the friction angles of the four materials
used on the rigid ramps). Practically, this involves computing
a misfit (using the L2 norm, in accordance with the Gaussian
character of the data) between the observed and predicted
thrust dips for every possible value of the friction angles.
The resulting probability distributions show for each friction
angle the range of values compatible with the experiments.
They prove to be in agreement with independent friction mea-
surements. The results reproduce very clearly the phenomenon
of shortcuts as well as the dependency between ramp and
thrust friction values and provide probabilistic upper or lower
bounds on the friction coefficients of the various ramps.

2. Description of the experiments

2.1. Experimental setup

In the 12 experiments, a layer of dry sand was compressed
by the horizontal movement of a rigid ramp (Fig. 1). All sur-
face relief created was eroded using a scraping board follow-
ing every 10 mm of shortening. Various ramps were used with
dips ranging from 19� to 66� (Table 1, column 4), and surfaces
made of four types of materials (groups A, B, C, and D in
Table 1, column 3). The sand layer width was w¼ 50 cm,
the length was l¼ 20 cm (experiments 1e6), or 35 cm (exper-
iments 7e12), and the thickness ei is given in Table 1, column
2. The width of the box (1 m) allowed us to let the sand fall
freely to the sides, without lateral side walls. The shortening
was applied until thrusts emerged close to the back wall.
The total shortening achieved ranges between 2 and 14 cm.
In all experiments, sand was slowly poured from a height of
about 20 cm, by the same person. Experiment 3 is a repetition
of experiment 2, but the sand was statically compacted by
firmly pressing a flat rigid board on the sand surface before
starting the shortening. No substantial differences were
noticed in the dip measurements of these two experiments
(columns 6 and 7 of Table 1). Although it represents substan-
tial amount of laboratory work, 12 experiments represent
a rather small sample from the point of view of inverse prob-
lem theory. In such a case, it is preferable to let the parameters
vary simultaneously (ramp dip and ramp friction) rather than
one by one: the sampling of the parametric space is therefore
made more efficient.

2.2. Properties of the analogue materials

The Nemours sand used in all experiments is a natural sand
sieved between 80 and 120 mm, with a sharp peak at 100 mm.
Its density is 1.53� 0.02 and its failure envelope is
t¼ (0.615� 0.03)snþ 80� 22 Pa which corresponds to
a friction angle ranging between 30.3� and 32.8�. The friction
of this sand against the ramps of type B (P150 sand paper)
follows t¼ (0.691� 0.004)sn� 20� 6 Pa (friction angle
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Fig. 1. Schematic diagram of the sand box. Note that the side walls are not in contact with the sand, which spreads freely in the box (w¼ 50 cm, and the box is 1 m

wide). The side walls serve only to guide the scraping board when eroding any relief above the height ei of the rigid ramp.
between 34.5� and 34.8�). For ramps of type D (fiber glass
sheet), t¼ (0.426� 0.005)snþ 51� 11 Pa (friction angle be-
tween 22.8� and 23.3�). All these frictional properties were
determined previously by Maillot and Koyi (2006). Friction
values of the sand against the ramp materials used in groups
A and C have not been measured. However, the PVC and var-
nished wood surface used in group A is smooth and hard and is
expected to have a low friction value, while the plaster coated
and sanded raw wood used in group C should have a friction
value lying between those of groups B (sand paper) and D
(smooth and soft fiber glass sheet). Thus the ramp friction
values may be reliably placed in increasing order: A<D
(m¼ 0.426� 0.005)<C< B (m¼ 0.691� 0.004). The bot-
tom of the box was covered with a fiber glass sheet with the
same friction as ramps of type D given above.
2.3. Measurement and statistical description of the
experimental results

The dips of the ramp (4) and thrusts (q) were measured by
hand picking the active faults from scanner images. Scanner
cross-sections were taken ever 3 cm along strike at the end
of each experiment with a definition of about 1 mm. Active
faults were determined by the offset they produce in the sur-
face topography since the last erosion event (i.e., last 10 mm
of horizontal shortening). Curved faults were sampled using
short straight segments, with each segment constituting one in-
dependent measurement. These raw data were then weighted
proportionally to segment length in order to give more impor-
tance to a planar thrust crossing all the sand layers compared
to a small segment. In general, along dip and along strike
Table 1

List of experiments. Columns 2e4 give the thickness of the sand layer (ei, column 2) that was shortened by an imposed right ramp dipping at 40 (column 4) and

made of material A, B, C, or D (column 3, see Section 2 for an explanation)

Experiment

number

Thickness

ei (mm)

Ramp

material

Ramp

dip 40 (�)

Kinematic

case

4� s4 (�) q� sq (�) Number of

samples

Q (c2)

(%)

1 28 A 30 1 30� 0.25 37.2� 8.2 57 9.6

2 41 A 49 1 49� 0.25 33.9� 3.3 20 13

3 41 A 49 1 49� 0.25 34.1� 4.2 65 62

4 55 A 66 1 66� 0.25 29.5� 4.4 58 15

5 103 B 66 3 40� 6 31.8� 3.9 22 70

6 92 B 50 3 48� 1 32� 3.9 52 27

7 93 C 34 1 34� 1 28.1� 5 214 99

8 78 C 19 1 19� 1 25.5� 6 23 99

9 94 C 51 1e3 43� 8.3 24.4� 4.8 65 68

10 91 D 27 1 27� 0.25 32.9� 6.9 127 1.8

11 91 D 35 1 35� 1 37� 9 159 26

12 91 D 49 1 49� 1 33.6� 8.5 209 1.7

Column 5 gives the observed kinematic case (Fig. 4). Columns 6 and 7 give the mean observed ramp dip ð4Þ and thrust dip ðqÞ, with their respective standard

deviations (s4 and sq). Column 8 is the number of independent measurements of q. Column 9 is the probability that the distribution of measured values of q is

Gaussian (according to a c2 test). Only the distributions of experiments 10 and 12 appear non-Gaussian.
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variations in the thrust dip, due to curvature and the anasto-
mosing character of the faults are well above the definition
of the scanner images. We now describe successively the mea-
surements of ramp dips and of thrust dips. Since only a single
ramp is active in each experiment, along which many thrusts
are created and uplifted, the statistical analysis can only be
performed on the thrust dips, not on the ramp dips. The
ramp dips 4 were in general equal to the imposed, rigid,
ones (40) and could be determined with a high level of preci-
sion. Error bars of 0.25� were added to these imposed dips in
order to avoid infinite misfits during the inversion procedure
(the 1� value in experiments 7, 11, and 12 allows for the actual
irregularity of the imposed ramp). When different from the im-
posed ramp, the spontaneous ramp may exhibit large standard
deviations s4 around its mean dip 4 (experiments 5 and 9) and
this is partly due to the small number of independent measure-
ments. For experiment 9, the large standard deviation (8.3�) is
due to large variations along strike, further discussed in the
next paragraph. We now describe the measurements of the
thrust dips q. The numbers of independent measurements n
are indicated in Table 1, column 8 (‘‘number of samples’’):
they range from 20 to 214 with an average of 90 measurements
per experiment. Histograms of the thrust dips in 2� bins for
each experiment are shown in Fig. 2. The resulting mean
value q and standard deviation sq of the thrust dips (Table 1,
column 7) were used to compare our measured dip distribu-
tions with a Gaussian distribution

PðqÞ ¼ e
�1

2

�
q� q

sq

�2

: ð1Þ

Like Gaussian distributions, most histograms exhibit a single
mode with a symmetric distribution, although the amplitude
of the mode is always larger than that of a Gaussian distribu-
tion (experiments 3, 4, 5, 6, and 7). Some experiments exhibit
asymmetry (experiments 2, 9, and 12) or are bi-modal (exper-
iment 1, and perhaps 8, 10, and 11). Qualitatively, it is easy to
see from Fig. 2 that experiments 3, 4, 5, 6, 7, and 11 seem
reasonably Gaussian, while the others (1, 2, 8, 9, 10, and
12) seem either bi-modal, or asymmetric. A useful quantitative
comparison is the c2 test which we performed as follows.
First, the range of dip values [0�, 90�] is divided into 10
bins at values ti (i¼ 0, . 10), such that they have equal
theoretical probabilities:Ztiþ1

ti

PðqÞ dq ¼ fth ¼ 0:1; c i ¼ 0;.9; ð2Þ

where t0¼�N and t10¼þN, and such that the sum of prob-
abilities of all the bins is 1. For experiments 2, 5, and 8 with
Exp. 9Exp. 7

Exp. 10 Exp. 11

Exp. 3

n=57 n=20

Exp. 2Exp. 1
n=65

Exp. 4

n=58 n=22
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Fig. 2. Histograms of thrust dips q for each experiment. The solid curves are the corresponding theoretical Gaussian distributions. To help comparison, a stippled

line is drawn at 30� in all graphs. n is the number of samples, or independent measurements, of q. Q is the probability for the histogram to follow a Gaussian

distribution according to the c2 test.
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less than 50 measurements, five bins were used instead of 10
(in which case, fth¼ 0.2, and i¼ 0, . 4 in Eq. (2)). Observed
frequencies of measurements fobs(i)¼ n(i)/n were than calcu-
lated from the tenth (or fifth) ti (n(i) is the number of dips
measured between ti�1 and ti). Then, we use c2 as an indicator
of dispersion of the observed frequencies with respect to the
theoretical ones:

c2 ¼ n
X9

i¼1

�
fobsðiÞ � fth

fth

�2

: ð3Þ

Finally, the probability that the observed distribution is
a Gaussian distribution is given by the integral from c2 to
þN of the c2 distribution function, that is noted Q(c2) and
given in percent in Table 1, column 9. For a perfect Gaussian
distribution, c2¼ 0 and Q¼ 100%. Typically, a value of Q
below 3% or 5% indicates a distribution that cannot be consid-
ered to be Gaussian. Surprisingly, experiment 1 gives a better
test than experiment 12. Also, experiments 10 and 12 fail the
test whilst experiment 8 succeeds almost perfectly! The reason
is that the test depends strongly on the total number n of inde-
pendent measurements used in Eq. (3). With small amounts of
data, the test suggests a Gaussian distribution even though the
histogram does not look Gaussian. In contrast, the distribution
can look reasonably Gaussian and have a negative test (exper-
iment 10) because there are a lot of data available so that each
departure from a Gaussian distribution is very informative and
constraining. We conclude that the Gaussian statistical model
is acceptable for our data, given the available amounts of
independent measurements. The choice of a Gaussian model
for the data allows us to choose with confidence the L2
norm in the definition of the misfit (19) during the inversion
procedure.

2.4. Qualitative description of the experimental results

The compression resulted in the development of thrusts in
the sand layer (Figs. 3a, and 4, top), and possibly of a sponta-
neous ramp if the imposed one was not favourably oriented for
slip (see illustration in Fig. 3b; a list of such experiments in
Table 1, column 5; and the idealised kinematics in Fig. 4, bot-
tom). The mean thrust dip q reaches a maximum for ramp dips
4 z 30�, and decreases for higher or lower ramp dips, regard-
less of the type of ramp material used. Conversely, for a fixed
ramp dip, q decreases systematically with an increase in ramp
friction (compare experiments 3, 12, and 9). However, q

exhibits a relatively narrow range throughout the experiments
(24e37�) compared to the range of imposed ramp dips
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Fig. 3. Scanner images of two typical experiments where the movement of the rigid ramp creates thrusts in the sand (a) and may be shortcut by the creation of

a spontaneous ramp (b). (a) and (b) are, respectively, modelled as cases 1 and 3 in the theoretical geometries of Fig. 4.
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(19e66�) thus suggesting that the thrust dip is relatively insen-
sitive to the dip of the imposed ramp. More interesting is the
occurrence (experiments 5, 6, and 9), or absence, of shortcuts.
This qualitatively different behaviour, and the very fact that it
did not occur in nine experiments despite the wide range of
ramp dips tested, brings a strong constraint on the friction pa-
rameters of the sand relative to those of the ramps that will be
highlighted and quantified by the inversion process. Finally,
the sand layer thickness (Table 1, column 2) has apparently
no substantial effect on the experimental results, and is given
here for completeness of information. Also, because of the full
erosion, a steady state is reached very quickly and the total
amount of shortening applied has very little effect on the thrust
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dips. Thus, variations in sand layer dimensions and in the total
shortening applied are disregarded in the following analysis of
the ramp and thrust dips. Pre-compaction (experiment 3) and
dilatancy along thrusts are also disregarded. Similarly, along
strike, and along dip variations in the fault surfaces are not
studied in detail, but are all integrated into the standard devi-
ations s4 and sq. The only detail useful to note concerns along
strike variations in experiment 9: the sand was sliding along
the imposed ramp on one side of the box, but created a sponta-
neous ramp on the other side. Since we did not reject any
experiment, this one was measured like all others, and the
resulting very large standard deviation of the ramp dip (8.3�)
automatically decreases its influence on the results of the in-
version, as one should expect. This lack of precise information
from experiment 9 probably has its origin in the relatively
large discrepancy between inverted and independently mea-
sured friction angles for the ramps of type C, as further
discussed in the inversion section.

The goal of the present work was to answer the following
question: What can be said about the friction coefficients of
the analogue materials given the series of 12 experiments pre-
sented above? More specifically, we would like to be able to
draw quantitative conclusions concerning the friction parame-
ters of the sand onto itself and on the four ramp materials
(A, B, C, and D). The answer can be found by inverting to-
gether all the dip data (ramp and thrusts) with respect to the
frictional parameters as shown in the inversion section. How-
ever, the direct problem must first be solved, and this is treated
in the next section.

3. The direct problem

The question specific to the experiments presented here is:
What are the dips of the two reverse faults (ramp and thrust)
appearing in the sand as functions of the dip of the imposed
ramp and of the friction parameters? The answer is provided
by the forward model presented below following Maillot and
Leroy (2003), and validated experimentally by Maillot and
Koyi (2006).

The solution involves finding the dips that minimise the to-
tal dissipation of mechanical work in the structure. The work
is defined as the product of the shear force by the slip rate
along the active faults. We have defined three kinematic sce-
narios for the active faults. Of these three scenarios, the opti-
mal one is the one that yields the smallest total dissipation, and
the solution to the direct problem is given by the optimal thrust
dips for the optimal scenario. These scenarios are illustrated in
Fig. 4 as case 1 (top), where the sand slides on the imposed
rigid ramp at velocity v0, case 2 (middle) where the sand cre-
ates a steeper spontaneous ramp, and case 3 (bottom) where
the spontaneous ramp has a lesser dip than the imposed one.
Column 5 of Table 1 shows that all experiments follow the
case 1, except experiments 5 and 6 which follow case 3, and
experiment 9 which, we recall, varies from 1 to 3 along strike.
No experiment corresponds to case 2 which is used here for
completeness of the solution of the direct problem. Case 2
has of course been observed in other analogue experiments
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with very low ramp dips (e.g., Persson, 2001). In all cases we
assume that the dissipation of energy occurs only by friction
along the active ramp (AB) and the thrust (BC), and neglect
the dissipation due to diffuse deformation in the sand. Note
that case 3 implies additional dissipation by friction along
the flat segment (BB0). Let us now develop the theory for
each case.

3.1. Case 1

We assume that the flow of sand is stationary and isochoric,
hence

vosinðqþ4Þ ¼ vi sin q; ð4Þ

obtained by stating that entry (vi) and exit (vo) velocities must
have the same component perpendicular to the thrust. This
choice of simple kinematics implies that we neglect dilatancy.
q is the dip of the thrust (BC), and 4 is the dip of the thrust
(AB) which for case 1 coincides with the imposed ramp dip
40 ¼ 4. As the material flux through the thrust (BC) is constant
(viei¼ voeo), it provides the following thickening or thinning
relation

eo ¼ ei

sinðqþ4Þ
sin q

: ð5Þ

The dissipation along each thrust is defined as the product
of the velocity jump across the thrust by the shear force it sus-
tains. Thus the dissipations along the ramp (AB) and the thrust
(BC) are, respectively,

DAB ¼ TABvi

sin q

sinðqþ4Þ

DBC ¼ TBCvi
sin 4

sinðqþ 4Þ; ð6Þ

where

TAB ¼ tan aRNAB

TBC ¼ tan aBNBC ð7Þ

are the mean shear forces acting, respectively, on the ramp
(AB) and thrust (BC), NAB and NBC are the mean forces nor-
mal to these thrusts, and aR and aB, the respective friction an-
gles. By adopting these MohreCoulomb relations we consider
a purely frictional behaviour of our sand and neglect the small
amounts of cohesion, strain-softening and again, dilatancy,
that are likely to be present (e.g. Lohrmann et al., 2003).
The forces TAB and TBC are determined by invoking the global
equilibrium of the hanging wall (ABC):

FAB þFBC þPABC ¼ 0: ð8Þ

The weight PABC is easily determined from Fig. 4:

PABC ¼�
1

2
rge2

i

sinðqþ4Þ
sin q sin 4

j: ð9Þ
Projecting the equilibrium Eq. (8) along axes (i, j) (Fig. 4) and
writing the mean forces FAB and FBC in terms only of their
shear components with the help of Eq. (7) yields two equations
with solutions

TAB ¼
1

2
rge2

i

sinðqþ4Þ sinðqþ aBÞ sin aR

sinðqþ4þ aRþ aBÞ sin q sin 4

TBC ¼
1

2
rge2

i

sinðqþ4Þ sinðqþaRÞ sin aB

sinðqþ4þaR þaBÞ sin qsin 4
: ð10Þ

Eqs. (10) and (6) complete the calculation of the total
dissipation

DT ¼ DABþDBC: ð11Þ

The optimal thrust dip qopt with respect to the total dissipation
verifies

vDT

vq
¼ sin2 qopt � sin

�
2qoptþ4þ aR þ aB

�sin aB

sin aR

sin 4¼ 0:

ð12Þ

The solution is

qopt ¼ arctg

 
A cos bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þA sin b
p

1þA sin b

!
; ð13Þ

A¼ sin aB

sin aR

sin 4; and b¼ 4þ aR þ aB: ð14Þ

This solution is illustrated in Fig. 5 for a reference parameter
set aR¼ 20�, aB¼ 30�, 4¼ 25�, each curve showing the effect
on qopt of one of the parameters (aR, aB, 4). Clearly, and
maybe counter-intuitively, the friction aR along the imposed
ramp is the most important parameter controlling the thrust
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Fig. 5. Optimal thrust dip (qopt) in case 1 of Fig. 4 (analytic solution (13)), for

aR¼ 20�, aB¼ 30�, 4¼ 25�, except for the parameter selected to vary as in-

dicated in the inset.
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dip qopt. It is in particular more important than the friction aB

on the thrust itself.

3.2. Case 2

In case 2 (Fig. 4, middle), all the dissipation occurs again
along the spontaneous ramp (AB) and thrust (BC). No addi-
tional dissipation is considered in the spontaneous foot wall
(ABA0) since the imposed ramp (A0B) is not active. We
must now optimise the total dissipation (11) with respect to
both thrust dips qopt and 4opt by solving Eq. (12) together with

vDT

v4
¼ sin2 4opt � sin

�
qoptþ 24opt þ aRþ aB

�sin aR

sin aB

sin qopt

¼ 0;

ð15Þ

and setting aR¼ aB since both thrusts occur within the sand.
The solution is

qopt ¼ 4opt ¼
p

4
� aB

2
; ð16Þ

with the additional condition that 4opt> 40, the dip of the
imposed ramp (A0B). If 4opt< 40, case 3 must be considered.

The solution (16) deserves some comments, because it
coincides with the dips of conjugate reverse faults that would
be obtained both from a Mohr circle construction, and by
Anderson’s theory of faulting (e.g., Turcotte and Schubert,
1982, p. 354). Anderson’s prediction is similar to the one pre-
sented here in that it is the result of a minimisation. The dif-
ference is that Anderson assumes a known stress distribution
whereas we start from a known kinematic framework, which
is directly linked to field observables and from which we
can then deduce mean forces by invoking global equilibrium.
In fact, from the mechanical point of view of limit analysis,
these approaches to the solution (16) are complementary. An-
derson’s approach yields a lower bound to the tectonic force
necessary to create conjugate faults, because the calculations
are done in a medium that is not yet fractured. Our kinematic
approach, in contrast, yields an upper bound, because the tec-
tonic force is calculated in a medium where the fractures are
already active. The coincidence of the two bounds proves
that Eq. (16) is the exact solution to the problem of case 2.

3.3. Case 3

There are three sources of dissipation in the case 3 of Fig. 4
(bottom): the spontaneous ramp (AB), the thrust (BC) and
the flat thrust (B0B). Dissipations along (AB) and (BC) are
calculated as in case 2. Dissipation along (B0B)

DB0B ¼ TB0Bvi ð17Þ

requires us to calculate the equilibrium of the block (ABB0) to
determine the mean shear force TB0B, again related to the
mean normal force NB0B by the MohreCoulomb relation
TB0B¼ tan aFNB0B. Since there is no slip along the rigid
ramp AB0, we have 0< TAB0 < tan aRNAB0. We have set
TAB0 ¼ 0.9 tan aRNAB0, and checked that NAB0 > 0, i.e., the
block ABB0 is not lifted upward. No analytic solution was
found, and the optimal thrust dips must therefore be deter-
mined numerically by finding the minimum of the total
dissipation

DT ¼ DABþDBCþDB0B ð18Þ

with respect to the thrust dips q and 4.

4. Inversion of dip data

The inverse problem is as follows: What are the values of
the friction coefficients compatible with the observed dips of
our 12 experiments? There are only three friction coefficients
at stake: the friction angle of the sand on the imposed ramp aR,
and on the flat aF, and the internal friction angle of the sand
aB. The friction on the flat aF appears only in case 3
(Fig. 4) and has a very small effect on the optimal thrust
dips (Maillot and Leroy, 2003). We therefore eliminate it
from the inversion and set aF¼ 23� in all the calculations,
which corresponds to the material of the bottom of the box
(fiber glass sheet). The parametric space of the inversion is
thus reduced to two coefficients, aR and aB, and can be fully
explored by numerical means.

Since four types of ramp materials were used (groups, A, B,
C, and D in Table 1), the inversion must be carried out inde-
pendently for each type to yield a friction coefficient aR for
each material. Also, since the same sand was used in all exper-
iments, a single internal friction coefficient aB is sought. The
inversion consists in calculating a misfit between the observed
and the theoretical thrust dips for every possible value of aR

and aB. Since the experimental data follow a Gaussian distri-
bution, we define the misfit with the L2 norm:

MXðaR;aBÞ ¼
XnX

i¼1

�
4ðiÞ �4optðaR;aBÞ

s4ðiÞ

�2

þ
�

qðiÞ � qoptðaR;aBÞ
sqðiÞ

�2

ð19Þ

where X stands for the type of ramp material (A, B, C, or D),
and nX is the number of experiments with ramp material X.
The probability, or likelihood, of the couple (aR, aB),

PXðaR;aBÞfe�
1
2MXðaR ;aBÞ; ð20Þ

is shown in Fig. 6. For each type of ramp material, abscissae
represent aR, and ordinates aB. For groups A, C, and D, the
distributions exhibit the same important features: zero proba-
bilities in the half-space aR> aB, and nearly constant proba-
bilities in the direction aRþ aB¼ constant. The former is
due to the absence of shortcuts (kinematic case 1) in groups
A, C, and D (except for experiment number 9). It is, however,
precisely because our forward modelling integrated the possi-
bility of shortcuts that their actual absence is significant and
leads to this very sharp drop of probability along the line
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aR¼ aB. The latter is due to the structure of the solution (13)
for case 1 (Fig. 5) which is very sensitive to the sum aRþ aB

and much less to the difference aR� aB. In contrast to the
groups A, C and D, in group B the probability that aR> aB

is not zero because shortcuts appeared systematically, making
the kinematic model in case 2 the most efficient, and implying
that the difference aR� aB remains small. The probability dis-
tribution appears very well focused, making the group B ex-
periments the most informative as will be confirmed by the
analysis of marginal probabilities. The grey bars indicate inde-
pendent measurements of the friction angles (Maillot and
Koyi, 2006) remembering that frictions on ramps A and C
have not been measured. They are in very good agreement
with the probability densities, except for group C. Here, we
observe a discrepancy of about 10� between the probability
distribution of aB and its value measured independently
(Fig. 6, bottom left, and Fig. 8). It is probably due to the
fact that experiment 9 has the highest ramp dip of group C
and was therefore expected to be very informative (like exper-
iments 4, 5, and 12 for the groups A, B, and D, respectively).
The change in kinematic scenario in experiment 9 (recall that
it shifts from case 1 to case 3 along strike) results in an
overestimation of the sand internal friction angle. Indeed,
the analytical solution presented in Fig. 5 (solid curve) shows
that a low thrust dip q results from a high ramp friction aR.
Conversely, an underestimated ramp dip (because of the occur-
rence of case 3) will imply an overestimation of the thrust
friction angle.

In support of the above interpretations in terms of qualitative
variations in the kinematics, we show in Fig. 7 the probability
distributions obtained when ignoring the possibility of short-
cuts in the forward modelling (case 1 only is considered, and
thus 4opt¼ 40). The nearly constant distributions in the direc-
tion aRþ aB¼ constant are preserved because they come
from the solution of case 1. However, there is now no drop in
probability for aR� aB. Very low and very high aB are now
probable, and the ramp frictions aR are also less constrained.
The distribution for the group B (top left) is completely differ-
ent for obvious reasons (shortcuts occurred systematically).
Thus, the comparison of Figs. 6 and 7 show that substantial in-
formation can be extracted if one includes different kinematic
scenarios in the forward modelling. It is not even necessary that
these kinematics have been observed: they only need to be pos-
sible within the investigated range of parameters.
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Fig. 7. Same caption as Fig. 6. Here, the probability functions are evaluated by considering only the kinematic case 1 in the forward modelling, ignoring the

possibility of shortcuts (cases 2 and 3).
Exact equality in Eq. (20) is obtained by normalising the
right hand side by its total integral (aR and aB ranging over
[0�, 90�]). Then, marginal probabilities can be computed to
obtain the likelihood of each parameter independently of the
other ones. Starting with the internal sand friction, aB, the
marginal probabilities for each group of experiments,

PXðaBÞ ¼
Zp=2

0

PXðaR;aBÞ daR; ð21Þ

are shown in Fig. 8 where X stands for A, B, C or D. Clearly,
the experiments of group B give the best information on aR, in
very close agreement with the independent measurements
(grey bar). The other groups of experiments are much less
constraining on aB. The total probability considering all 12
experiments,

PðaBÞ ¼ ð4PAðaBÞ þ 2PBðaBÞ þ 3PCðaBÞ þ 3PDðaBÞÞ=12;

ð22Þ

is illustrated in Fig. 8 by a thick solid line and exhibits the two
peaks, respectively, due to experiments A, B, and C, D.
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Similarly, the marginal probabilities for aR are illustrated in
Fig. 9. For groups A, C, and D, the distributions give upper
bounds for aR (respectively, 25�, 45�, and 35�) because, again,
no shortcut appeared for all ramp dips tested. For group B, the
distribution gives 23� as a lower bound for aR. The sharpness
of the probability function is significant, and indicates a rela-
tive order of the ramp friction values as ramp A< ramp
D< ramp C< ramp B, in agreement with the available inde-
pendent measurements.

5. Conclusion

The set of 12 experiments presented here involves a very
simple horizontal shortening of a homogeneous sand layer
over an imposed rigid ramp with varying dips and friction
coefficients. We measured the dips of the thrusts occurring
in the sand as it was forced to climb up the ramp. In certain
combinations of ramp dip and ramp friction, the imposed
ramp is shortcut by a less steep spontaneous ramp in the
sand, and this was also measured. A c2 test allowed us to con-
clude that our data follow Gaussian distributions although
some departures from that statistical model may be attributed
to (i) lack of independent measurements (i.e., number of thrust
segments that can be identified), (ii) systematic curvature of
thrusts towards the ramp or surface, (iii) effects of finite box
size, or sand heterogeneity. Effects of layer thickness and total
amount of shortening, pre-compaction, dilatancy, fault curva-
ture, along strike variations, are all seen as second order
features which are not taken into account in the forward
modelling of the dip data. All these parameters potentially
contribute to increase the standard deviations and thus render
the experiments less informative. Quantitative interpretations
of these observations were carried out by an inversion proce-
dure using the L2 norm between observed and predicted
ramp and thrust dips.

The theory used to model these data is based on the geo-
metrical description of the thrusts from which mean forces
are evaluated by invoking global force balance. Forces and
slip velocities along the faults were then combined to compute
the dissipation of mechanical work. Thrust dips are predicted
by minimising the total dissipation with respect to ramp and
thrust dips. This exercise was repeated for three kinematic sce-
narios (no shortcut, steeper shortcut, less steep shortcut). The
predicted scenario is the one that yields the least total dissipa-
tion. Analytical solutions are given for the first two cases.

The inversion presented here aims to evaluate the probabil-
ity distributions of five friction coefficients: that of the sand,
and one for each of the four ramp materials used. Internal
sand friction is best constrained because all 12 experiments
help to constrain its value. The sharp peak in its distribution
coincides exactly with independent measurements of the fric-
tion. However, a very large range of values (25e65�) have
non-negligible probabilities, thus reflecting experimental
imperfections as well as the highly variable character of the
friction coefficient, known to be difficult to reproduce experi-
mentally. More interestingly perhaps are the results on the
ramp frictions. For groups A and B, they show sharp transi-
tions that provide bounds that are not obvious (aRA< 25�

< aRB� 35�). These transitions are due to the occurrence of
shortcuts which is a qualitative, easily measured, effect that
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is the result of small changes in continuous variables such as
the friction coefficient. Thus, because the dips are very smooth
functions of the ramp friction coefficients, their sole measure-
ment does not constrain the friction parameters very well. One
must additionally study global changes in the geometry (dips)
of the thrusts: it is the very fact that a geometry is possible, or
not possible, that is very informative.
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